
All For One Port, One Port For All

Bram Moolenaar
Stichting NLnet Labs
<Bram@A-A-P.org>

The ports system provides a convenient way to install an
application from source code. With just a few commands the
files for the latest version are downloaded, build and installed.
A port specifies patches that need to be applied, allows
tweaking features and handles dependencies on other
components. These useful features of the ports system have
increased the popularity of BSD distributions.

Each BSD distribution has their own ports system. Although
they all originate from the same root, incompatible features
have been added. This requires a port to be done and
maintained for each system separately. Since there are
thousands of ports, the amount of duplicated work is significant.

Attempts to reunite the ports systems have failed so far.
Examining the reasons for this makes clear that the chances for
each BSD system to drop their own solution and use a common
ports system are very small. The development of solutions that
replace the existing ports systems have stalled.

A possible solution is introducing a new system that exists side
by side with the traditional ports system. This allows a gradual
shift, moving ports to the new system one by one. Since the
ports files of new system do not need to be backward
compatible, there is a lot of freedom to make choices for a
better and more powerful implementation. The goal that it must
co-exist with the traditional ports systems makes sure it avoids
the pitfalls that stopped previous reuniting attempts from being
successful.

A first version of this new system has been implemented. To
avoid the complicated mix of Makefile and shell script the
recipe format of the A-A-P project has been used. This first
implementation shows the advantages and possibilities of the
proposed solution, but also the problems that still need to be
solved.

1. HISTORY

The first available code for the ports system was
written by Jordan K. Hubbard. The date
mentioned in the file, still present in derived works,
is August 20 1994 [FreeBSD]. This version did
not handle dependencies or downloading of files.
Development went fast though, by January 1995
there were already 150 ports [Asami].

In the following years the OpenBSD and NetBSD
projects have split off a version from FreeBSD and
started adding their own features.

FreeBSD (1994 Aug 20) [FreeBSD]

OpenBSD (1996 Jun 3) [OpenBSD]

NetBSD (1997 Aug 20) [NetBSD]

figure 1. History of BSD ports systems

This figure does not show various exchanges of
modifications. All three systems have been
enhanced over time, which can be seen in the
CVS logs [FreeBSD] [OpenBSD] [NetBSD].

NetBSD uses the name "pkgsrc" for their ports
system and uses "package" for what others call a
"port". To keep it simple we will use the term
"port" here for dealing with sources, "package" for
an installable set of files with binaries and "source
package" for a port that includes the required
source files and patches.

Zoularis is the name used for an adaptation of
NetBSD pkgsrc to other systems, such as Solaris
[Zoularis]. It is not different from pkgsrc in
functionality, therefore we will not mention it
below.

NetBSD started pkgsrc because the FreeBSD
system had a few small problems that needed to
be solved (i386 centric, fixed install directory).
They apparently didn't try very hard convincing the
FreeBSD people to fix this. According to Hubert
Feyrer: "it was easier for us to just make the
changes we wanted". And FreeBSD apparently
wasn't interested in including all the NetBSD
improvements either.

OpenBSD first forked off their version with the
intention to feed back changes to FreeBSD. A few
years back OpenBSD intentionally improved their
ports system separately from FreeBSD. Partly to

clean up the Makefiles and also to add useful
features. Currently there does not appear to be
an intention to resync with FreeBSD.

It is clear that incompatibilities between the three
ports systems were not added intentionally or
because of technical reasons, but are the result of
lack of motivation to work together on one system.
Being able to quickly change their own version
instead of having to convince someone else to
include changes also appears to play an important
role.

2. BENEFITS OF ONE PORT SYSTEM

The separation into three different ports systems
causes several problems:
• Maintenance of each port has to be done three

times. This can vary from simple changes, such
as updating the version numbers and file
names, to handling more complicated issues.

• Bugs and security problems that are not solved
by the maintainer of the original sources have to
be fixed three times.

• Tricks required to port an application to a BSD
system have to be figured out three times.

• Dependencies have to be figured out three
times.

• If one BSD system adds a nice feature to their
ports system, it is not directly available to the
others.

Would there be one ports system, there are
several benefits:
• For each port there are more eyes to detect a

bug and more hands to fix it. This makes the
average reliability of the software considerably
higher.

• Ports will be updated quicker and more ports
will be available.

• Fewer people are required for maintenance.
• Each BSD system will become more powerful

and attractive.
• When a user is making a choice for one of the

three BSD systems he no longer needs to
exclude systems that do not provide a port he
requires. He can make the choice on more
relevant issues.

One thing that will not change is the effort required
for testing. Each port still needs to be tried out on
many different systems.

3. FAILED SOLUTIONS

Despite the obvious benefits from using one ports
system, the attempts to bring the BSD systems
back together failed so far.

The most promising attempt to make a ports and
packages system that should replace all others is
Open Packages [OpenPackages]. It was created
with the goal to reunite. But the project has
stalled, the last news item is dated July 2001.
Why? Talking with the developers reveals several
reasons.

At first the project consisted of a good idea for
reuniting the three solutions. Then the
contributors got carried away and wanted to do
much more. It became too much work and
developers started dropping out. An attempt to
redefine the project and split it up in manageable
pieces has been made, but there do not appear to
be developers who will do the work. Out of the six
modules five have no project leader. Possible
reasons are:
• Developers do not find the extra features that

Open Packages offers important enough to
spend a lot of time on.

• Implementing the features is quite complicated.
There is much "hidden knowledge" in the
existing ports systems and few comments or
documentation to explain why certain choices
were made. Not many people have the skills to
do the work.

• The people who do have the required skills
prefer working on their own project (esp. the
maintainers of the ports systems of the BSD
distributions).

Another alternative is OpenPKG [OpenPKG]. This
project appears to promise more than what it can
actually do. It says it is portable, but it uses GNU
bash shell scripts and an incompatible version of
rpm. It also uses many specific system utilities.
You can say it could be made portable. Its Linux
background and lack of co-operating with the
existing packages system make it unattractive to
replace the BSD ports systems. When used side-
by-side it does not handle dependencies between
the two systems.

There are a few other ports and/or package
systems, but they do not come close to being a
useful replacement for the BSD ports systems.
[Install Tools]

4. HOPELESS SOLUTIONS

Instead of switching to a new system, a solution
would be to have the existing systems come back
together. This would require that features from all
three existing systems are included into a
common version, with the result that the port files
are identical. There are several reasons why this
is very unlikely to happen.

The current situation is that FreeBSD is the most
popular system and has the largest number of
ports, while OpenBSD and NetBSD offer more
features. This creates a deadlock: FreeBSD is
doing well and does not appear to be interested to
change their ports system. NetBSD and
OpenBSD have more features, thus do not want to
use the FreeBSD implementation.

FreeBSD

OpenBSD

NetBSD

figure 2. Growth of number of BSD ports
[Feyrer]

This graph shows the growth of the ports systems
over a long period. Recent figures: FreeBSD
7523, NetBSD 3163, OpenBSD 1965. The
OpenBSD ports system uses flavours, which
reduces their count by an unknown number.

Another important reason is that the developers of
each BSD system do not like the idea of giving up
the control of their code. They like to be able to
decide what goes in and what does not. The
releases happen asynchronously, freezes
sometimes make it difficult to include updates.
Thus a release of one BSD distribution gets in the
way of development of the others.

The ports systems are not compatible. Reuniting
them means that thousands of ports need to be
adjusted. Even when some of the work can be
automated, the testing will still be a huge amount
of work. None of the BSD systems will want to
take this effort in between two minor releases.
And doing it for a major release means two
versions of each port have to be maintained for a
longer time, since a new major release exists
besides the previous, stable release branch for
more than a year.

How about creating a ports system that is
backward compatible with each of the existing
ports systems? This could start in such a way that
a port contains a big "if" statement, separating the
code for each system. Then gradually common

parts can be collected until the system-specific
part is made very small. The problem with this is
that it would be very complicated to implement. A
Makefile is not a programming language. The
combination of BSD specific Makefile syntax with
shell scripts and the make program re-invoking
itself leads to very ugly code. This solution
probably leads to the worst code quality possible.
And it seems to be impossible to find people who
are motivated and have the skills to do this work.
Even more so than for the stalled Open Packages
project.

5. A NEW SOLUTION

If reuniting is impossible, and existing efforts do
not lead to a useful ports system, then what will?
What we need is a new application that offers a
path for a gradual shift towards a unified ports
system. That is the only way to avoid having to
rewrite all the ports at once. The existing ports
systems will continue to exist, the new solution
has to co-operate with it.

In the following we call the existing ports systems
"traditional" and the proposed solution the "new"
system. Similarly we will talk about a "traditional
port" for the existing ports systems and use "new
port" for the proposed solution.

Once a port has been made for the new system, it
should work on all BSD systems and possibly
others. This makes it attractive to create ports for
the new system. It is not necessary to transfer all
traditional ports to the new system, thus there is
no big threshold to start using it.

The required co-operation with the traditional ports
systems implies that dependencies can be
handled in both directions. A new port can
depend on a traditional port and the other way
around. And the registration of installed packages
must use the existing package system to avoid the
need for two sets of commands to find out what
packages are currently installed.

This all sounds very nice. The question is how
this will be implemented. Using make (BSD or
GNU) has the disadvantage of resulting in ugly
solutions when it gets complicated. Quoting
Jordan Hubbard: "FreeBSD ports is essentially
implemented as some very impressive but hairy
BSD make(1) macros and can be a little opaque
and non-extensible from the perspective of
someone looking to extend or re-factor parts of the
system" [Hubbard].

Inventing something new specifically for use in the
new ports system has the disadvantage of yet-
another-file-format. A script language like Python
or Perl would work, but still requires adding a lot of
application specific functions and variables, thus
creating a new file format anyway. And it would
be very different from the current ports files, which
would discourage quite a few people. Examples
are Cons (uses Perl) [Cons] and SCons (uses
Python) [SCons].

The solution proposed here uses the A-A-P
recipe. This is not the only possible solution, but
one that has a good chance of being successful.
An alternative might be DarwinPorts
[DarwinPorts]. More about that in section 12.

6. INTRODUCING A-A-P

Understanding the proposed solution requires
knowing the basic idea of A-A-P recipes.

The A-A-P project provides a portable framework
for developing, distributing and installing software
[A-A-P]. What is relevant for this paper is the
A-A-P recipe. It was specifically designed to
replace Makefiles and shell scripts. It provides
much more functionality and avoids the
dependency on shell commands with specific
options and features. A recipe is often portable to
many different systems, including MS-Windows.

A recipe is like a Makefile in many ways. The
base is formed by specifying the dependencies
between files. The build commands of a
dependency are used to produce a target file from
sources. Everyone using Makefiles will quickly
understand the structure of a recipe. Here is an
example for compiling a C program:

myprog : main.c version.c extra.c
 :do build $source

The ":do" command invokes a build action. It
detects that the sources are C code and decides
to use a C compiler. How the compiler will be
invoked depends on the system. This is
automatically detected or comes from a
configuration file. This separates the system-
independent specification of what needs to be
done from the system-dependent details. It is also
still possible to invoke a shell command when
portability is not required.

Some of the advantages of using the A-A-P recipe
instead of a Makefile for building a program:
• Signatures are used instead of timestamps, this

avoids problems with networked file systems

and files unpacked from an archive.
Timestamps can still be used when desired.

• Dependencies on included files are handled
automatically. There is no need for running
"make depend".

• Building for different systems from one set of
sources is handled automatically, a separate
directory is used for intermediate results (object
files) of each system.

• Rules for line continuation are flexible,
backslashes are not often needed. This avoids
the most common mistakes. The amount of
indent is used to indicate where a command
ends. Example:

SOURCE = main.c
version.c
extra.c

TARGET = myprog

This actually does almost the same as the
previous example. The SOURCE and TARGET
variables are turned into a dependency
automatically.

For often-used tasks the built-in commands can
be used. These are similar to common shell
commands, but with extra features. For example,
the ":copy" command can copy files specified with
a URL (http:, ftp:, scp:, etc.). This greatly reduces
the use of specific system commands and
improves portability. Some of the built-in
commands are:

:copy copy files and directories
:move rename/move files and directories
: mkdir create a directory or directory tree
:delete delete a file or directory tree
:cat concatenate files
:include include a recipe file
:child read a sub-project recipe file
:execute execute a recipe
:system execute a shell command
:update execute build commands when a

target is outdated

These commands can not only be used in build
commands, but also at the top level. This makes
it possible to use a recipe like a shell script. This
is one of the advantages of an A-A-P recipe over
using a Makefile that is important when
implementing a ports system.

For control flow and expressions Python script can
be used. This provides a powerful and well-
defined syntax that combines pretty well with the
Makefile-like syntax of the recipe (e.g., comments
start with “#” and amount of indent is significant).
Python libraries provide functionality to handle

almost any task and make it possible to avoid
system-specific code. Example:

SUBDIR = sub
USE_SUBDIR ?= 0
@if USE_SUBDIR:
 SOURCE += ` glob(SUBDIR + "/*.c")`

The line starting with "@" in this example is a
Python command. The USE_SUBDIR variable
can be set by a non-Python assignment and is
used by the Python command. Thus the variables
available in the Python code and the non-Python
code are the same. In the last line a Python
expression in backticks is used. The Python
glob() function expands wildcards and the
resulting list of files is appended to the SOURCE
variable.

The A-A-P recipe has uploading and downloading
functionality built-in. For example, a file can be
downloaded automatically by specifying where it is
to be obtained:

EXTRA_SOURCE = extra.c {refresh =
ftp://ftp.foo.org/pub/files/extra.c}

xfoo : $SOURCE $EXTRA_SOURCE

In this example, if the "xfoo" target is updated and
the file "extra.c" does not exist locally, it will
automatically be downloaded. The text between {
and } specifies an attribute. Attributes provide a
generic mechanism to attach meta information to
a file name.

Uploading is done in a similar way. A recipe like
this is used to update the A-A-P web site:

FILES = ` glob("*.html")`
` glob("images/ *.png")`

: attr {publish =
scp://vimboss@vim.sf.net/vim/%file%}
$FILES

The file names are assigned to FILES using the
Python glob() function. The destination of the files
is added by attaching the "publish" attribute to the
file names. Executing this recipe with "aap
publish" will cause each file with a "publish"
attribute to be uploaded. The uploading is skipped
for files that did not change since the last upload.

A-A-P is a generic tool, a sort of a super-make.
You can use it to develop software, distribute files,
download, install, etc. More information can be
found on the web site [A-A-P].

7. PORTS WITH A-A-P

Since A-A-P recipes are powerful and still
resemble Makefiles, they form an excellent base
for implementing a new ports system. When using
a recipe for a port file, in many cases it will not be
necessary to use the extra A-A-P features and the
new port mostly looks like a traditional port. When
more complicated tasks are to be performed, the
recipe file offers the functionality in a nice way. A
first implementation of this new ports system has
been made.

A user of the traditional ports system usually
performs these steps:
1. become root
2. update the whole ports tree with cvsup
3. build and test: "cd group/appname" "make"

"make test"
4. install: "make install"

Using a new port the usual steps are:
1. download or update a port recipe (one file)
2. build and test: "aap", "aap test"
3. try it out: "aap install DESTDIR=$HOME"
4. install: "aap install"

The new port works in a similar way as the
traditional port. Dependencies will be handled
where needed, files are downloaded and patches
applied. The most important differences of using
a new port are:
• It can be run anywhere, it does not need to

happen in /usr/ports.
• There is no need to obtain the whole ports tree

before installing one port. Only parts that are
actually used will be updated.

• Not doing the downloading and building as root
is much more secure. For installing a package
(also for dependencies) the root password must
be entered once.

• To try out a port it can be installed for one user.
• Updating to a new version is simply done with

"aap refresh".

Not all of this is easily implemented and quite a
few choices need to be made. The most
important issues will be discussed in the following
sections.

8. USING PACKAGES

There are two basic methods for installing a port:
1. The port directly installs the files to their final

location. A binary package can be created
after this. Recording the port as being installed
is done separately from the actual install.

2. The port installs the files into a temporary
directory. This is often called a "fake install".
A binary package is created from these files.
The binary package is then installed and
registered as being installed.

The second method has many advantages. It
avoids accidentally overwriting existing files. The
first method is actually impossible when a binary
package is to be created without installing it, an
already installed package using the same files
would be corrupted. The second method also
makes sure that installing the port gives the same
results as installing the binary package.

A disadvantage of the second system is that for
some ports it involves extra work to make the
installation put the files in the temporary directory
instead of /usr/local. This is a small price to pay,
therefore the choice was made to use the second
method.

Since the package administration is not the same
on all systems, A-A-P leaves the work of installing
the binary package to existing system tools.

Port recipe Sources + patches

Binary package

pkg_install

A-A-P

figure 3. Connection between A-A-P and the
package system

A disadvantage of this system is that not all
package tools support sufficient features. Desired
features are:
• Dependency handling on a range of package

versions and with wildcards.
• Possibility to install two versions of the same

package at the same time.
• Support for the sequence: Install version 1.1,

install version 1.2, verify that version 1.2 works
well, delete version 1.1.

These are generic problems and separate from
the porting issue. They should be solved in the
package tools. Adding another set of package
commands next to the existing ones is not a good
idea, since the existing commands will not be
aware of packages installed with the new
commands. This must really be solved by

improving the existing package tools. Until this
has been implemented the new ports system will
accept the limits of the existing commands. Some
issues could be handled by adding a pre-install
script to the package, e.g., for handling
dependencies with wildcards. However, this
causes new problems, the time would be better
invested in improving the package system.

A source package is nothing more than an archive
containing the port recipe with all required source
files and patches. No downloading will be needed
then. Otherwise the building and installing works
just like using the port recipe.

9. DEPENDENCIES

The dependency checking is split up in two parts:
1. Verifying the dependencies can be met. This

happens before archives and patches are
downloaded, so that wastefully downloading
something that will not work is avoided.

2. Installing ports and/or packages that are
required happens just before they are needed.
This reduces cyclic dependency problems.

There is no need to update all ports before
installing one. To figure out the dependencies
only the port recipe has to be obtained. Normally,
when a recipe can be found on the system that
meets the dependency it is used. It is also
possible to specify that the latest version of the
recipe must be obtained.

There is no need to specify the directory (e.g.,
"editors/emacs20-mule-devel") for a dependency.
This has always been confusing, especially for
ports that exist in more than one place or are
moved. A unique name is required anyway. This
also allows including a version number in the
directory name or adding a subdirectory with
versions, so that several versions of a port can co-
exist. A simple, automatically generated index file
is used to locate an application locally. The same
can be done on a server that provides ports for
downloading.

Alternatively, unofficial ports can be obtained from
various locations. This is especially useful for
ports under development that depend on ports

that have not been committed yet. For stable
ports this should not be used.

As mentioned above, the dependencies that can
be specified in a package are not always
sufficient. It might be necessary that the
dependencies in the binary package specify fixed
version numbers, thus are less flexible. Therefore
the dependencies of the ports recipe will be used
when the recipe is available.

Besides the dependencies on ports and packages
that need to be installed, the A-A-P recipe also
offers features to check for installed tools and
decide how to build the application. This
automatic configuration is useful to reduce the
number of dependencies for applications that do
not use autoconf and do allow specifying optional
features when building.

10. BACKWARDS COMPATIBLE

To be able to work properly side-by-side with the
existing ports system, the dependency of a new
style port on a traditional port must be handled.
This is not different from dependencies between
traditional ports. A-A-P will invoke the traditional
ports tools. The knowledge of how this is done on
different systems is build into A-A-P. The user will
only need to do a bit of configuration if he is not
using the standard setup.

The dependency of a traditional port on a new port
requires a bit more work, since the traditional port
does not know about the existence of the new
ports system. A wrapper port is required to make
the connection. Most of this wrapper is the same
for all wrapper ports, since the actual building is
done with the port recipe. There is no need to
specify items like MASTER_SITES, for example.
What the wrapper port still needs to do:
• Specify the required items, such as port name

and version number.
• Specify the dependencies. Not all of them need

to be included, the recipe can also handle them.
Including them in the wrapper port has the
advantage that several tools will be able to find
them.

• Specify a dependency on A-A-P itself, so that it
will be installed when necessary.

A-A-P port recipe for Vim
AAPVERSION = 1.0

PORTNAME = vim
PORTVERSION = 6.1
MAINTAINER = Bram@vim.org

CATEGORIES = editors
PORTCOMMENT = Vim - Vi IMproved, the text editor
PORTDESCR << EOF
This is the description for the Vim package.
A very nice editor indeed.
You can find all info on http://www.vim.org.

EOF

Where to obtain an update of this recipe from.
AAPROOT = http://www.a-a-p.org/vim
:recipe {refresh = $AAPROOT/main.aap}

WRKSRC = vim61 # Vim does not use vim-6.1
DEPENDS = gtk>=1.2<2.0 | motif>=1.2 # GTK 2.0 does not work yet
BUILDPROG = make

This is used when CVS is available
CVSROOT ?= :pserver:anonymous@cvs.vim.sf.net:/cvsroot/vim
CVSMODULES = vim
CVSTAG = vim-6-1-003

This is used when CVS is not available or when disabled with "CVS=no".
MASTER_SITES = ftp://ftp.vim.org/pub/vim
PATCH_SITES = $MASTER_SITES/patches
DISTFILES = unix/vim-6.1.tar.bz2

extra/vim-6.1-lang.tar.gz
PATCHFILES = 6.1.001 6.1.002

#>>> automatically inserted by "aap makesum" <<<
do-checksum:

:checksum $DISTDIR/vim-6.1.tar.bz2 {md5 = 7fd0f915adc7c0dab89772884268b030}
:checksum $DISTDIR/vim-6.1-lang.tar.gz {md5 = ed6742805866d11d6a28267330980ab1}
:checksum $PATCHDISTDIR/6.1.001 {md5 = 97bdbe371953b9d25f006f8b58b53532}
:checksum $PATCHDISTDIR/6.1.002 {md5 = f56455248658f019dcf3e2a56a470080}

#>>> end <<<

11. EXAMPLE

The example shows some of the A-A-P port recipe
features. Most of the variables are the same or
similar to the traditional ports. A few items
deserve an explanation:

• AAPVERSION indicates the version of A-A-P
this recipe was written for. When the version of
A-A-P actually used is older it will produce an
error. When it is newer it will behave like the
indicated version would.

• PORTCOMMENT and PORTDESCR are
included in the recipe. Only one file needs to be
downloaded to obtain a port.

• The ":recipe" command specifies where an
update of the port recipe is available. The
command "aap refresh" will get it.

• DEPENDS specifies that either GTK or Motif is
required, both for building and running Vim. For
GTK the version must be 1.2 or higher, but
below version 2.0. Motif version 1.2 and higher
is accepted. If neither is currently installed the

first package mentioned is installed, in this case
GTK, with the highest acceptable version that
can be found.

• Vim is configured and build with "make", this is
specified by setting BUILDPROG. If configure
would have to be run first a "pre-build" target is
to be defined. This allows the port maintainer to
perform the configuration exactly as he wants
to, without the need to know about special
variables.

• CVSROOT indicates the files are available
through CVS. This is the preferred method to
obtain the source files, because it includes all
the latest patches. "CVS=no" can be used to
disable using CVS.

• When CVS is not used the DISTFILES are
downloaded. The checksums are also included
in the port recipe. This is done by the port
maintainer with the command "aap makesum".

• There is no list of installed files. It is generated
automatically by doing a fake install and finding
the files ending up in the fake root. For Vim this
works as expected. For other applications it
might be required to specify the files explicitly.

12. WILL IT WORK?

The big question is whether the proposed solution
will actually catch on and a substantial number of
ports will become available. Will A-A-P succeed
where others have failed? The above text has
explained that there is no fundamental
showstopper. But the solution is not without
disadvantages:
• Python is required. Not everybody likes it, the

performance is less than with a C program and
it is not a standard part on all systems.

• Yet another tool to learn to use.
• It does not solve the problems with packages.

There are many advantages:
• Using Python is much better than a mix of BSD

make and shell script.
• No tricky solutions are needed, such as how a

different master site list is selected by adding
":2" to the file name; the sites to be used for a
file can be specified directly with an attribute.

• It is easy to use several versions of a port
(stable, current, alpha).

• Only the actual install on the system needs to
be done by root.

• Ports can work on many Unix systems.
• A-A-P is still under development, this provides

the possibility of adding up all knowledge of
existing ports systems. There is much freedom
to specify the ports recipe format in a good way.

The proposed new ports system with A-A-P looks
more attractive than other solutions. Especially
the possibility to use it side by side to a traditional
ports system, this allows users to try it out and get
used to it. Still, whether it will attract a substantial
audience remains unpredictable. When the A-A-P
recipe is used for other purposes (developing and
distributing software) it also becomes more likely
that a ports system based on it will be successful.
This should become clear the coming year.

An alternative for using A-A-P might be
DarwinPorts [DarwinPorts]. This project also
decided that a script language is needed to avoid
the problems with Makefiles, they chose TCL.
The file format looks more different from a
traditional port than the A-A-P recipe, but not as
much as Cons or SCons. What makes it
interesting is that the "father of BSD ports" Jordan

Hubbard is involved in DarwinPorts. However, it is
still new and currently only working for Mac OS X
10.2. Support for FreeBSD is planned and the
people behind OpenPackages recently expressed
they will join with DarwinPorts. The main
drawback of DarwinPorts is that it does not co-
operate with the existing ports and packages
systems. It registers installed packages in its own
way, storing TCL procedures instead of shell
scripts. Making the switch from the traditional
package system to DarwinPorts will be difficult.

13. CONCLUSION AND CURRENT
STATUS

The proposed solution is to create a new ports
system with A-A-P. This system has enough
similarities with the traditional ports systems to
avoid a steep learning curve and at the same time
offers many improvements. This solution does
have a good chance of providing a united ports
system for the BSD systems. The possibility to
use it next to the existing ports systems avoids
many of the problems that made other solutions
fail.

A-A-P is still under development. Version 1.0 is
expected spring 2003. The author of this paper
will be working full-time on A-A-P. This means the
project will not stall. The speed of developments
will depend on contributions from others.

The A-A-P ports system currently works for a few
examples. Before a large number of ports are to
be made, the syntax of the port recipe must be
ascertained. This requires that useful features
from the various ports systems are included and
the consistency of the result is checked. Before it
can be used for stable systems a lot of testing is
required. Thus there is still quite a lot of work to
be done.

In between the writing of this paper and the
presentation on the European BSD conference
2002 more progress will have been made, an
update will be given in the presentation. Further
progress will depend on reactions on this paper.

REFERENCES

[A-A-P] The A-A-P project: http://www.A-A-P.org
[Asami] Usenix 1999 presentation by Satoshi Asami:

http://www.usenix.org/events/usenix99/full_papers/asami/asami.pdf
http://people.freebsd.org/~asami/presen/usenix99/html/index.html

[Cons] http://www.dsmit.com/cons/
[DarwinPorts] http://www.opendarwin.org/projects/darwinports/
[Feyrer] NetBSD packages growth compared to FreeBSD and OpenBSD, made by Hubert

Feyrer: http://netbsd.org/Documentation/software/pkg-growth.html
[FreeBSD] FreeBSD CVS log for bsd.port.mk:

http://www.freebsd.org/cgi/cvsweb.cgi/ports/Mk/bsd.port.mk
[Hubbard] DarwinPorts FAQ: http://www.opendarwin.org/projects/darwinports/faq.php
[Install Tools] Overview of tools: http://www.A-A-P.org/tools_install.html
[NetBSD] NetBSD CVS log for bsd.pkg.mk (long!):

http://cvsweb.netbsd.org/bsdweb.cgi/pkgsrc/mk/bsd.pkg.mk
[OpenBSD] OpenBSD CVS log for bsd.port.mk:

http://www.openbsd.org/cgi-bin/cvsweb/ports/infrastructure/mk/bsd.port.mk
[OpenPackages] http://www.openpackages.org/
[OpenPKG] http://www.openpkg.org/
[SCons] http://www.scons.org/
[Zoularis] http://www.netbsd.org/zoularis/

RELEVANT LINKS

FreeBSD CVS log for ports/INDEX with Asami' s song texts:
http://www.freebsd.org/cgi/cvsweb.cgi/ports/INDEX

FreeBSD porters Handbook: http://www.freebsd.org/doc/en_US.ISO8859-1/books/porters-handbook
OpenBSD: "Building an OpenBSD port" http://www.openbsd.org/porting.html
OpenBSD: "Important differences from other BSD projects" http://www.openbsd.org/porting/diffs.html
NetBSD packages collection (pkgsrc): http://www.netbsd.org/Documentation/software/packages.html
NetBSD pkgsc documentation (well written, mentions differences from FreeBSD):

ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc/Packages.txt
NetBSD bsd.pkg.mk: ftp://ftp.netbsd.org/pub/NetBSD/packages/pkgsrc/mk/bsd.pkg.mk

BIOGRAPHY

Bram Moolenaar has worked on open-source software for more than ten years. He is mostly known as the
creator of the text editor Vim. Currently he is working on a project called A-A-P, which is about creating,
distributing and installing (open source) software. His background is in computer hardware, but these days
mostly works on software. He still knows on which end to hold a soldering iron though. In the past he did
inventions for digital copying machines, until open-source software became his full-time job. He likes
travelling, and often visits a project in the south of Uganda. Bram founded the ICCF Holland foundation to
help needy children there. His home site is www.moolenaar.net.

