
1

Bram Moolenaar
stichting Nlnet Labs

www.A-A-P.org

All For One Port, One Port For All

Presentation given by Bram Moolenaar at the European BSD conference,
November 17 2002, Amsterdam.

You may know my name for being the main author of Vim, the editor.

My current daytime work is the A−A−P project. I’m the project leader.

For my daily work I use FreeBSD (still version 4.5, should upgrade soon).

Mostly using lots of xterms with Vim in them.

2

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 2

terminology

port minimal set of files to build and
install an application from sources

package installabe set of files with binaries

source package installable set of files with sources

I assume I do not have to explain what the ports system is and how it works..

In this presentation I will be using the FreeBSD terminology.

NetBSD uses different terms, because they use "port" for using NetBSD on a
different platform.

A source package is more or less a port with the used source files included.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 2

terminology

port minimal set of files to build and
install an application from sources

package installabe set of files with binaries

source package installable set of files with sources

33

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 3

overview

1. The Great Divide
2. A New Solution
3. Introducing A-A-P
4. The Port Recipe
5. Conclusions

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 3

overview

1. The Great Divide
2. A New Solution
3. Introducing A-A-P
4. The Port Recipe
5. Conclusions

44

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 4

1. The Great Divide
 history

(this does not show occasional merges)

FreeBSD (1994 August 20)

OpenBSD (1996 June 3)

NetBSD (1997 August 20)

Jordan K. Hubbard started the ports system, originally with just a few features.

All systems still contain the credits for Jordan with the date in 1994. This
clearly shows their common root.

The figure only shows the first split−off for each system. There were various
exchanges of modifications in between.

The split−offs mostly happened to add features or solve problems, with the
intention to feed the changes back to FreeBSD.

These days each system appears to be developed independently, without the
desire to include each others modifications. It has also become more difficult to

include each others changes.

The three systems are growing further apart. Not intentional, but because of the
lack of motivation to to work together. Being able to make changes directly
instead of having to convince someone else to include them also plays an
important role.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 4

1. The Great Divide
 history

(this does not show occasional merges)

FreeBSD (1994 August 20)

OpenBSD (1996 June 3)

NetBSD (1997 August 20)

55

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 5

1. The Great Divide
 differences

FreeBSD Limited feature growth.
Largest number of ports.

OpenBSD A few more features than FreeBSD:
fake install, flavors, multi-packages,
generated packing list, etc.

NetBSD Many more features than FreeBSD and
growing fastest.
Support for multiple platforms essential.

Ironically the OpenBSD documentation refers to the FreeBSD handbook. Thus
besides the extra features it appears to be mostly the same.

Overall the differences are not that big, still using the same mechanisms.

However, the differences are big enough to make the ports files incompatible
and taking over changes difficult.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 5

1. The Great Divide
 differences

FreeBSD Limited feature growth.
Largest number of ports.

OpenBSD A few more features than FreeBSD:
fake install, flavors, multi-packages,
generated packing list, etc.

NetBSD Many more features than FreeBSD and
growing fastest.
Support for multiple platforms essential.

6

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 6

1. The Great Divide
 reasons to reunite

Disadvantages of the current situation:

$ every port has to be done three times

$ bugs need to be solved three times

$ porting tricks are to be invented three times

$ improvements of the ports system done three times

Benefits of reuniting:

$ More eyes to detect a bug, more hands to solve it

$ More ports available on each system

$ Each BSD system will become more attractive

$ Allows a user to chose an OS on features

Obviously, maintaining three systems with ports is three times as much work.
Since there are thousands of ports, the amount of duplicated work is significant.

Currently a user might chose one of the BSD systems because it is the only one
that has a port he needs to use. If all systems have the same ports he can make
his selection based on other features.

For a group of developers this may seem unimportant. Look at it from the
point of view of a user. He just wants to have the port he needs to use.

One thing will not change when reuniting: testing still needs to be done for each
platform.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 6

1. The Great Divide
 reasons to reunite

Disadvantages of the current situation:

$ every port has to be done three times

$ bugs need to be solved three times

$ porting tricks are to be invented three times

$ improvements of the ports system done three times

Benefits of reuniting:

$ More eyes to detect a bug, more hands to solve it

$ More ports available on each system

$ Each BSD system will become more attractive

$ Allows a user to chose an OS on features

7

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 7

1. The Great Divide
 attempts to reunite

The most promising attempt: OpenPackages

This project has stalled, there is no usable solution. Why?

$ It started out as a good idea to reunite the different
ports systems.

$ The supporters got carried away with all kinds of nice
features.

$ It became too much work, developers started dropping
out.

$ An attempt to split the work up in manageable pieces
did not help.

Recent change: use the infrastructure of DarwinPorts.

Originally this project started with the intention to make one ports system for
all BSD systems.

Whether the cooperation with DarwinPorts will really work is unclear. It is not
mentioned on the DarwinPorts maillist No messages in the OpenPackages−tech
maillist since the announcement.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 7

1. The Great Divide
 attempts to reunite

The most promising attempt: OpenPackages

This project has stalled, there is no usable solution. Why?

$ It started out as a good idea to reunite the different
ports systems.

$ The supporters got carried away with all kinds of nice
features.

$ It became too much work, developers started dropping
out.

$ An attempt to split the work up in manageable pieces
did not help.

Recent change: use the infrastructure of DarwinPorts.

8

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 8

1. The Great Divide
 attempts to reunite

Why did developers not join in and make
OpenPackages a success?

$ It was not clear that the BSD distributions
would ever switch to OpenPackages.

$ There were not enough advantages from
the viewpoint of each BSD distribution.

$ There was too much, too complicated work
while there are not many skilled developers
available.

$ Skilled developers prefer to work on their
own solution.

OpenPackages did sound like a good idea, so why did it not work out?

The project leader is not a developer himself, thus he had to rely on others to do
the implementation.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 8

1. The Great Divide
 attempts to reunite

Why did developers not join in and make
OpenPackages a success?

$ It was not clear that the BSD distributions
would ever switch to OpenPackages.

$ There were not enough advantages from
the viewpoint of each BSD distribution.

$ There was too much, too complicated work
while there are not many skilled developers
available.

$ Skilled developers prefer to work on their
own solution.

9

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 9

1. The Great Divide
 ways to reunite

Possible ways to reunite; what would work?

1. Use one of the ports systems for all BSD systems.

2. Merge the systems.

3. Make a new system that works for everyone.

Let’s make a list of possible ways to get back to one ports system.

If wanted, it’s always possible to take over one of the other systems. This
didn’t happen, and is extremely unlikely to happen in the future.

SEE NEXT SLIDE

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 9

1. The Great Divide
 ways to reunite

Possible ways to reunite; what would work?

1. Use one of the ports systems for all BSD systems.

2. Merge the systems.

3. Make a new system that works for everyone.

10

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 10

1. The Great Divide
 ports system growth

Since FreeBSD has the smallest number of extra features, it is the most likely
one to take over one of the other ports system implementation. However, since
FreeBSD has the largest number of ports, the incompatibilities are a big
problem.

Graph made by Hubert Feyrer in 2001.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 10

1. The Great Divide
 ports system growth

11

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 11

1. The Great Divide
 ways to reunite

Possible ways to reunite; what would work?

1. Use one of the ports systems for all BSD systems.

2. Merge the systems.

3. Make a new system that works for everyone.

The tendency is that merging of individual changes is decreasing. There appears
to be no reason why this would turn around.

OpenPackages has shown that making a new system is unlikely to work.

Main problem here is that the port files are incompatible. Switching to
another system would mean thousands of ports are suddenly unusable.

So what will work...?

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 11

1. The Great Divide
 ways to reunite

Possible ways to reunite; what would work?

1. Use one of the ports systems for all BSD systems.

2. Merge the systems.

3. Make a new system that works for everyone.

12

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 12

overview

1. The Great Divide
2. A New Solution
3. Introducing A-A-P
4. The Port Recipe
5. Conclusions

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 12

overview

1. The Great Divide
2. A New Solution
3. Introducing A-A-P
4. The Port Recipe
5. Conclusions

13

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 13

2. A New Solution
 method

Main problem with the solutions tried so far:
The switch to a new system causes too many
incompatibilities.

Solution:
Don't switch but add a new system that works
side-by-side with the traditional system.

This is the essential choice for the proposed solution. Other choices that follow
depend on personal preferences..

Note the terminology: traditional ports system and new ports system

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 13

2. A New Solution
 method

Main problem with the solutions tried so far:
The switch to a new system causes too many
incompatibilities.

Solution:
Don't switch but add a new system that works
side-by-side with the traditional system.

14

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 14

2. A New Solution
 goals

$ Work side by side with the traditional ports system
$ Include good ideas from all traditional ports

systems (e.g., fake install)
$ No need to be backward compatible
$ Use a good implementation base
$ Make it as simple as possible to write a port,

automate as much as possible

The idea is that gradually more and more ports will be done for the new system.
Eventually the traditional system can be discarded.

Although the port files do not need to be backwards compatible, it would be
nice to use a similar structure to avoid scaring of port maintainers.

Not having to be backwards compatible leaves room for a better and more
powerful implementation.

An example of what can be automized is the list of files. Especially because
this may change often.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 14

2. A New Solution
 goals

$ Work side by side with the traditional ports system
$ Include good ideas from all traditional ports

systems (e.g., fake install)
$ No need to be backward compatible
$ Use a good implementation base
$ Make it as simple as possible to write a port,

automate as much as possible

15

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 15

2. A New Solution
 choices

Essential: package administration.

Use the traditional package system.

This is not without disadvantages...

$ Dependency handling limited

$ Not possible to install two versions of one package

$ Deleting a package may remove files from another
(version of the) package

Only when the traditional package system is used is it possible to keep the
registration of installed packages consistent.

The disadvantages are generic, they should be solved anyway. And these can
be solved without incompatibilities with the traditional ports system.

Example: Install version 1.1, install version 1.2, delete version 1.1. Files that
are identical in both releases will be deleted (on FreeBSD at least).

Adding a new set of package tools is not a good alternative, since dependencies
between the traditional and the new system cannot be handled.

There is no big need for a reunited package system. The new ports system can
be made to work with all package systems.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 15

2. A New Solution
 choices

Essential: package administration.

Use the traditional package system.

This is not without disadvantages...

$ Dependency handling limited

$ Not possible to install two versions of one package

$ Deleting a package may remove files from another
(version of the) package

16

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 16

2. A New Solution
 design

Port recipe Sources + patches
new ports

system

Binary package

pkg_install

Distribute

The Binary package can be distributed and used just like a package created with
the traditional ports system.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 16

2. A New Solution
 design

Port recipe Sources + patches
new ports

system

Binary package

pkg_install

Distribute

17

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 17

2. A New Solution
 implementation

Makefile with shell scripts is not a good way to
implement a ports system:

$ Easy to make mistakes

$ Not portable

$ Relies on many external tools

$ Tricks needed to make it work

$ Picks up arbitrary environment variables

Choice: Use A-A-P.

External tools that are standard UNIX items should be OK. But it’s too easy to
rely on specific versions (e.g., GNU tools intend of BSD ones).

The choice for A−A−P is more or less a personal preference. There are
alternatives that others might find a better choice.

To verify that these ideas are really possible, a proof of concept has been made
with A−A−P.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 17

2. A New Solution
 implementation

Makefile with shell scripts is not a good way to
implement a ports system:

$ Easy to make mistakes

$ Not portable

$ Relies on many external tools

$ Tricks needed to make it work

$ Picks up arbitrary environment variables

Choice: Use A-A-P.

18

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 18

overview

1. The Great Divide
2. A New Solution
3. Introducing A-A-P
4. The Port Recipe
5. Conclusions

A−A−P is a system for developing, distributing and installing software. Here
we will use the build tool part of it. That’s also the only part that’s currently
available.

Even if you don’t like my ideas for the new ports system, you might still want
to use A−A−P.

I’m just giving an overview here, this is not a lecture. If you want to learn
using A−A−P read the tutorial on the A−A−P web site.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 18

overview

1. The Great Divide
2. A New Solution
3. Introducing A-A-P
4. The Port Recipe
5. Conclusions

19

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 19

3. Introducing A-A-P
 Hello World example

SOURCE = hello.c
TARGET = hello

Most computer languages start with an example that just prints "Hello World".
This is an A−A−P recipe to compile the C version of this program.

This is really the whole thing. Store this recipe as "main.aap" and run the "aap"
command. Let’s see what happens

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 19

3. Introducing A-A-P
 Hello World example

SOURCE = hello.c
TARGET = hello

20

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 20

3. Introducing A-A-P
 Hello World example

% aap

Aap: Creating directory "/home/mool/tmp/build−
FreeBSD4_5_RELEASE"

Aap: cc −I/usr/local/include −g −O2 −E −MM hello.c >
build−FreeBSD4_5_RELEASE/hello.c.aap

Aap: cc −I/usr/local/include −g −O2 −c −o build−
FreeBSD4_5_RELEASE/hello.o hello.c

Aap: cc −L/usr/local/lib −g −O2 −o hello build−
FreeBSD4_5_RELEASE/hello.o

% touch hello.c

% aap

%

111

2

3

4

(1) First of all a directory is created to put the intermediate results in. The
name is different for every platform, so that compilation for multiple platforms
is automatically supported.

(2) The first invocation of "cc" obtains the dependencies on header files. A−A−
P automatically detects these dependencies, which is a lot simpler and more
reliable than doing this by hand.

(3) The next two invocations of "cc" compile and link the program.

(4) When touching the source file A−A−P knows it does not need to be
compiled, because it uses signatures. This is more reliable than timestamps,
especially when working with networked file systems, unpacking an archive or
restoring an older version.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 20

3. Introducing A-A-P
 Hello World example

% aap

Aap: Creating directory "/home/mool/tmp/build−
FreeBSD4_5_RELEASE"

Aap: cc −I/usr/local/include −g −O2 −E −MM hello.c >
build−FreeBSD4_5_RELEASE/hello.c.aap

Aap: cc −I/usr/local/include −g −O2 −c −o build−
FreeBSD4_5_RELEASE/hello.o hello.c

Aap: cc −L/usr/local/lib −g −O2 −o hello build−
FreeBSD4_5_RELEASE/hello.o

% touch hello.c

% aap

%

111

2

3

4

21

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 21

3. Introducing A-A-P
 Hello World example

recipe for compiling hello.c
all : hello
hello : hello.c

:system $CC $CPPFLAGS $CFLAGS
 $LDFLAGS −o $target $source

This is an example that doesn’t use the automatic mechanism for SOURCE and
TARGET.

The recipe format is mostly like a Makefile, but there are a number of
important differences.

The comments and dependencies are just like in a Makefile.

Build commands can be more than shell commands. A comprehensive set of
often used commands is available. Therefore shell commands need to be
preceded with ":system" or ":sys".

Line continuation does not require a backslash at the end of the line. The
indent shows where the next command starts.

There is mostly no need to put parenthesis or braces around variable names, but
it is allowed.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 21

3. Introducing A-A-P
 Hello World example

recipe for compiling hello.c
all : hello
hello : hello.c

:system $CC $CPPFLAGS $CFLAGS
 $LDFLAGS −o $target $source

22

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 22

3. Introducing A-A-P
 web site example

A−A−P recipe for uploading changed files to a web site

FILES =
index.html
design.html
manpage.html
download.html
examples.html
‘glob("images/*.png")‘

:attr {publish = scp://user@foo.sf.net/dir/%file%} $FILES

execute this with: aap publish

This recipe is used to upload modified files to a web site.
There are a few things here that you might find interesting

The list of file names that is to be uploaded is given one name per line. No
backslashes are needed, the indent shows where the list ends. Wildcards are
expanded with the Python glob() function. A Python expression is given in
backticks, similar to how this is done in a shell.

NOTE: the glob() command is in backticks, but this font has a strange
glyph for backticks.

The ":attr" or ":attribute" command attaches an attribute to each item in
$FILES. Attributes is a generic mechanism to specify what is to be done with a
file.

In the example the "publish" attribute specifies where files are to be uploaded
to.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 22

3. Introducing A-A-P
 web site example

A−A−P recipe for uploading changed files to a web site

FILES =
index.html
design.html

manpage.html
download.html
examples.html
‘glob("images/*.png")‘

:attr {publish = scp://user@foo.sf.net/dir/%file%} $FILES

execute this with: aap publish

23

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 23

3. Introducing A-A-P
 web site example

A−A−P recipe for maintaining a web site

FILES =

index.html

design.html

manpage.html

download.html

examples.html

‘glob("images/*.png")‘

:attr {publish = scp://user@foo.sf.net/dir/%file%} $FILES

all : $FILES

publish: $FILES

:publishall

:rule %.html : start.part %_title.part middle.part %.part end.part

:cat $source >! $target

This adds generating the HTML files from parts.

The "all" target is used to build the HTML files from five parts. The ":rule"
command at the end specifies how this is done with the ":cat" command. This
works just like the UNIX "cat" command and also works on non−UNIX
systems.

The ":rule" command specifies a generic way to make a .html file from .part
file.

$source stands for the list of sources used in the dependency.

Note the use of the percent sign, you cannot do this in a Makefile.

The ":publishall" command uploads all modified files to the URL specified with
the "publish" attribute.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 23

3. Introducing A-A-P
 web site example

A−A−P recipe for maintaining a web site

FILES =

index.html

design.html

manpage.html

download.html

examples.html

‘glob("images/*.png")‘

:attr {publish = scp://user@foo.sf.net/dir/%file%} $FILES

all : $FILES

publish: $FILES

:publishall

:rule %.html : start.part %_title.part middle.part %.part end.part

:cat $source >! $target

24

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 24

3. Introducing A-A-P
 download example

A−A−P recipe for building a program from

remote files

SITE = ftp://ftp.foo.org/pub/foo/files

:recipe {fetch = $SITE/main.aap}

SOURCE = main.c version.c util.c

INCLUDE = common.h

TARGET = foobar

:attr {fetch = $SITE/%file%} $SOURCE $INCLUDE

This recipe is used to download individual files for an application.

The ":recipe" command is used to obtain a new version of the recipe itself. This
makes it possible to modify the recipe and let the user download it without
typing the URL.

The build commands are automatically generated from SOURCE and
TARGET.

Since the URL is given as an attribute to the files, A−A−P will know where to
download them from.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 24

3. Introducing A-A-P
 download example

A−A−P recipe for building a program from

remote files

SITE = ftp://ftp.foo.org/pub/foo/files

:recipe {fetch = $SITE/main.aap}

SOURCE = main.c version.c util.c

INCLUDE = common.h

TARGET = foobar

:attr {fetch = $SITE/%file%} $SOURCE $INCLUDE

25

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 25

3. Introducing A-A-P
 CVS example

VERSION = 1.013

CVSROOT =
:ext:$CVSUSER_FOO@cvs.foo.sf.net:/cvsroot/foo

FILES = COPYING
 README.txt
 main.aap
 ‘glob("*.py")‘

:attr {commit = cvs://$CVSROOT} $FILES

:attr {logentry = updated for version $VERSION}

 $FILES

I will not try explain everything here.

Using CVS is like another way to upload and download files. The CVSROOT
is specified like a URL. This is especially useful for people who don’t know
CVS very well.

CVS can be used for downloading only, this is a simple way of getting the
latest version of an application.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 25

3. Introducing A-A-P
 CVS example

VERSION = 1.013

CVSROOT =
:ext:$CVSUSER_FOO@cvs.foo.sf.net:/cvsroot/foo

FILES = COPYING
 README.txt
 main.aap
 ‘glob("*.py")‘

:attr {commit = cvs://$CVSROOT} $FILES

:attr {logentry = updated for version $VERSION}

 $FILES

26

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 26

3. Introducing A-A-P
 use of Python

INCDIR = test

@if OSTYPE == "posix":

 LISTCMD = ls

@elif OSTYPE == "mswin":

 LISTCMD = dir

@try:

 :system $LISTCMD $INCDIR >!tt

@except UserError, err:

 :print Could not list directory $INCDIR:

 ‘str(err)‘

When you need to add flow control, expressions or something complicated,
Python script can be used. It mixes with the other items in a recipe.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 26

3. Introducing A-A-P
 use of Python

INCDIR = test

@if OSTYPE == "posix":

 LISTCMD = ls

@elif OSTYPE == "mswin":

 LISTCMD = dir

@try:

 :system $LISTCMD $INCDIR >!tt

@except UserError, err:

 :print Could not list directory $INCDIR:

 ‘str(err)‘

27

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 27

3. Introducing A-A-P
 built-in commands

all: mirrors.html

:attr {publish = scp://user@foo.sf.net/dir/%file%}

 mirrors.html

mirrors.html : MIRRORS

 :print Generating $−target from $−source

 @import txt2html

 :cat $source

 | :eval txt2html.filter(stdin)

 | :cat head.html −

 >! $target

 :print ‘"</body> </html>"‘ >> $target

There are many built−in commands to use for common tasks. This avoids
using shell commands, which are not portable.

This example shows how an HTML file is generated from a plain text file.

The "@import txt2html" command imports a Python module. The "filter()"
function it defines is used in an ":eval" command.

Note that a pipe is supported, much like it is in a shell.

This is just to show what is possible with an A−A−P recipe, I will skip the
details here.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 27

3. Introducing A-A-P
 built-in commands

all: mirrors.html

:attr {publish = scp://user@foo.sf.net/dir/%file%}

 mirrors.html

mirrors.html : MIRRORS

 :print Generating $−target from $−source

 @import txt2html

 :cat $source

 | :eval txt2html.filter(stdin)

 | :cat head.html −

 >! $target

 :print ‘"</body> </html>"‘ >> $target

28

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 28

overview

1. The Great Divide
2. A New Solution
3. Introducing A-A-P
4. The Port Recipe
5. Conclusions

So far you have seen the generic items in an A−A−P recipe. It is a super−make
tool.

Now lets see how the A−A−P recipe can be used for a port. This is more or
less like a Makefile is used for a traditional port.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 28

overview

1. The Great Divide
2. A New Solution
3. Introducing A-A-P
4. The Port Recipe
5. Conclusions

29

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 29

4. The Port Recipe
 goals

Since the A-A-P port does not need to be backwards
compatible, let's try to make it easy to use:

$ Be able to let a port refresh itself

$ Avoid doing work as root

$ Allow installing a port for a single user

$ Support for updating to a new version

$ Etc.

Not having the restriction to be backwards compatible gives us quite a few
possabilities.

Not having to update the whole ports tree before installing one is a big
advantage. For me it takes over half an hour to run cvsup, and that’s with a fast
internet connection.

Security becomes more important every day. To avoid building a port while
being root helps a bit.

Installing for a single user is required for trying it out and when the system
administrator is not cooperative.

Some applications are updated very often. Being able to update a port in a
simple way is very much desired. The dependencies often make it complicated
though.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 29

4. The Port Recipe
 goals

Since the A-A-P port does not need to be backwards
compatible, let's try to make it easy to use:

$ Be able to let a port refresh itself

$ Avoid doing work as root

$ Allow installing a port for a single user

$ Support for updating to a new version

$ Etc.

30

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 30

4. The Port Recipe
 traditional port use

1. Become root

2. Update the whole ports tree:
cvsup

3. Build and test:
cd group/appname
make
make test

4. Install:
make install

This is how you mostly install a traditional port.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 30

4. The Port Recipe
 traditional port use

1. Become root

2. Update the whole ports tree:
cvsup

3. Build and test:
cd group/appname
make
make test

4. Install:
make install

31

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 31

4. The Port Recipe
 new port use

1. Download the port recipe (one file)

2. Build and test:
aap
aap test

3. Try it out:
aap install DESTDIR=$HOME

4. Install:
aap install

This is how you normally install an A−A−P port.

Usually the system maintainer would have his own directory with the port tree
somewhere. He does not need to be root to use it.

If the port has dependencies, the port recipes for those packages may be
automatically downloaded as well.

The "try out" step is very important on a multi−user system. You don’t want to
break tools that are being used.

Note that there is no step to become root. In the final install step you will be
prompted to enter the root password. It is only needed once, also when several
dependencies are to be installed. This is done in a separate shell, so that the
building isn’t done by root.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 31

4. The Port Recipe
 new port use

1. Download the port recipe (one file)

2. Build and test:
aap
aap test

3. Try it out:
aap install DESTDIR=$HOME

4. Install:
aap install

32

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 32

4. The Port Recipe
 port recipe format

Starting point: use common items from traditional
ports system. A few differences:

$ Name archives directly instead of letting them
depend on a dozen variables; automatically
recognize the method to be used for unpacking

$ Python script is often used instead of shell script

$ Put most things inside the recipe: checksums,
comment, description

$ Generate the list of files when possible

$ Allways use a fake install

Using useful items from the traditional ports system has the advantage that it’s
easier to switch to the new system.

Shell script can still be used when it’s needed.

The fake install is required to be able to generate a binary package without
overwriting files on the system.

Example: Vim contains hundreds of syntax files, therefore it is vey convenient
to generate the list of files automatically.

Always using a fake install might have some problems, perhaps it should be
allowed to install in another way in specific situations.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 32

4. The Port Recipe
 port recipe format

Starting point: use common items from traditional
ports system. A few differences:

$ Name archives directly instead of letting them
depend on a dozen variables; automatically
recognize the method to be used for unpacking

$ Python script is often used instead of shell script

$ Put most things inside the recipe: checksums,
comment, description

$ Generate the list of files when possible

$ Allways use a fake install

33

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 33

4. The Port Recipe
 example overview

A−A−P port recipe for Vim
AAPVERSION = 1.0

PORTNAME = vim
PORTVERSION = 6.1
MAINTAINER = Bram@vim.org

CATEGORIES = editors
PORTCOMMENT = Vim − Vi IMproved, the text editor
PORTDESCR << EOF
This is the description for the Vim package.
A very nice editor indeed.
URL: http://www.vim.org
EOF

Where to obtain an update of this recipe from.
AAPROOT = http://www.a−a−p.org/vim
:recipe {refresh = $AAPROOT/main.aap}

WRKSRC = vim61 # Vim doesn’t use vim−6.1
DEPENDS = gtk>=1.2<2.0 | motif>=1.2 # GTK 2.0 doesn’t work yet
BUILDPROG = make

This is used when CVS is available
CVSROOT ?= :pserver:anonymous@cvs.vim.sf.net:/cvsroot/vim
CVSMODULES = vim
CVSTAG = vim−6−1−003

This is used when CVS is not available and when
disabled with "CVS=no".
MASTER_SITES = ftp://ftp.vim.org/pub/vim
PATCH_SITES = $MASTER_SITES/patches
DISTFILES = unix/vim−6.1.tar.bz2 extra/vim−6.1−lang.tar.gz
PATCHFILES = 6.1.001 6.1.002 6.1.003

#>>> automatically inserted by "aap makesum" <<<
do−checksum:

:checksum $DISTDIR/vim−6.1.tar.bz2 {md5 = 7fd0f915adc7c0dab89772884268b030}
:checksum $DISTDIR/vim−6.1−lang.tar.gz {md5 = ed6742805866d11d6a28267330980ab1}
:checksum $PATCHDISTDIR/6.1.001 {md5 = 97bdbe371953b9d25f006f8b58b53532}
:checksum $PATCHDISTDIR/6.1.002 {md5 = f56455248658f019dcf3e2a56a470080}
:checksum $PATCHDISTDIR/6.1.003 {md5 = 0e000edba66562473a5f1e9b5b269bb8}

#>>> end <<<

Most things in the port recipe look just like the traditional port Makefile. It is a
bit longer, because of including the description and checksums.

Don’t worry if you can’t read this, I’ll explain each part.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 33

4. The Port Recipe
 example overview

A−A−P port recipe for Vim
AAPVERSION = 1.0

PORTNAME = vim
PORTVERSION = 6.1
MAINTAINER = Bram@vim.org

CATEGORIES = editors
PORTCOMMENT = Vim − Vi IMproved, the text editor
PORTDESCR << EOF
This is the description for the Vim package.
A very nice editor indeed.
URL: http://www.vim.org
EOF

Where to obtain an update of this recipe from.
AAPROOT = http://www.a−a−p.org/vim
:recipe {refresh = $AAPROOT/main.aap}

WRKSRC = vim61 # Vim doesn’t use vim−6.1
DEPENDS = gtk>=1.2<2.0 | motif>=1.2 # GTK 2.0 doesn’t work yet
BUILDPROG = make

This is used when CVS is available
CVSROOT ?= :pserver:anonymous@cvs.vim.sf.net:/cvsroot/vim
CVSMODULES = vim
CVSTAG = vim−6−1−003

This is used when CVS is not available and when
disabled with "CVS=no".
MASTER_SITES = ftp://ftp.vim.org/pub/vim
PATCH_SITES = $MASTER_SITES/patches
DISTFILES = unix/vim−6.1.tar.bz2 extra/vim−6.1−lang.tar.gz
PATCHFILES = 6.1.001 6.1.002 6.1.003

#>>> automatically inserted by "aap makesum" <<<
do−checksum:

:checksum $DISTDIR/vim−6.1.tar.bz2 {md5 = 7fd0f915adc7c0dab89772884268b030}
:checksum $DISTDIR/vim−6.1−lang.tar.gz {md5 = ed6742805866d11d6a28267330980ab1}
:checksum $PATCHDISTDIR/6.1.001 {md5 = 97bdbe371953b9d25f006f8b58b53532}
:checksum $PATCHDISTDIR/6.1.002 {md5 = f56455248658f019dcf3e2a56a470080}
:checksum $PATCHDISTDIR/6.1.003 {md5 = 0e000edba66562473a5f1e9b5b269bb8}

#>>> end <<<

34

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 34

4. The Port Recipe
 example part 1

A−A−P port recipe for Vim

AAPVERSION = 1.0

PORTNAME = vim

PORTVERSION = 6.1

MAINTAINER = Bram@vim.org

CATEGORIES = editors

PORTCOMMENT = Vim − Vi IMproved, the text editor

PORTDESCR << EOF

This is the description for the Vim package.

A very nice editor indeed.

URL: http://www.vim.org

EOF

Most things in the port recipe look just like the traditional port Makefile.

The comment and description is given right here. That’s easier than using a
separate file for this. It avoids the inefficiency caused by a large number of
small files in the port collection.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 34

4. The Port Recipe
 example part 1

A−A−P port recipe for Vim

AAPVERSION = 1.0

PORTNAME = vim

PORTVERSION = 6.1

MAINTAINER = Bram@vim.org

CATEGORIES = editors

PORTCOMMENT = Vim − Vi IMproved, the text editor

PORTDESCR << EOF

This is the description for the Vim package.

A very nice editor indeed.

URL: http://www.vim.org

EOF

35

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 35

4. The Port Recipe
 example part 2

Where to obtain an update of this recipe from.

AAPROOT = http://www.a−a−p.org/vim

:recipe {refresh = $AAPROOT/main.aap}

WRKSRC = vim61 # Vim doesn’t use vim−6.1

DEPENDS = gtk>=1.2<2.0 | motif>=1.2
GTK 2.0 doesn’t work yet

BUILDPROG = make

The ":recipe" command is used to obtain a fresh copy of the recipe when
desired. Thus the recipe knows where to download itself from.

The dependencies specify which items this port depends on. It can be a list of
specific versions or use ranges. More about the implementation of this further
on.

It is possible to specify any build command, including configure, without the
need to overrule the default dependency.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 35

4. The Port Recipe
 example part 2

Where to obtain an update of this recipe from.

AAPROOT = http://www.a−a−p.org/vim

:recipe {refresh = $AAPROOT/main.aap}

WRKSRC = vim61 # Vim doesn’t use vim−6.1

DEPENDS = gtk>=1.2<2.0 | motif>=1.2
GTK 2.0 doesn’t work yet

BUILDPROG = make

36

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 36

4. The Port Recipe
 example part 3

This is used when CVS is available

CVSROOT ?= :pserver:anonymous@cvs.vim.sf.net:/cvsroot/vim

CVSMODULES = vim

CVSTAG = vim−6−1−003

This is used when CVS is not available and when

disabled with "CVS=no".

MASTER_SITES = ftp://ftp.vim.org/pub/vim

PATCH_SITES = $MASTER_SITES/patches

DISTFILES = unix/vim−6.1.tar.bz2
 extra/vim−6.1−lang.tar.gz

PATCHFILES = 6.1.001 6.1.002 6.1.003

This port can be obtained through CVS or using archives and patches.

Obtaining files through CVS is possible, but you can leave it out if you don’t
like it. For stable ports it’s probably better not to use CVS, for the latest
version it may be the only way to get the files.

Note that two archives are specified, with a different extention. This is much
simpler than using various variables to form the archive name.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 36

4. The Port Recipe
 example part 3

This is used when CVS is available

CVSROOT ?= :pserver:anonymous@cvs.vim.sf.net:/cvsroot/vim

CVSMODULES = vim

CVSTAG = vim−6−1−003

This is used when CVS is not available and when

disabled with "CVS=no".

MASTER_SITES = ftp://ftp.vim.org/pub/vim

PATCH_SITES = $MASTER_SITES/patches

DISTFILES = unix/vim−6.1.tar.bz2
 extra/vim−6.1−lang.tar.gz

PATCHFILES = 6.1.001 6.1.002 6.1.003

37

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 37

4. The Port Recipe
 example part 4

#>>> automatically inserted by "aap makesum" <<<

do−checksum:

:checksum $DISTDIR/vim−6.1.tar.bz2
{md5 = 7fd0f915adc7c0dab89772884268b030}

:checksum $DISTDIR/vim−6.1−lang.tar.gz
{md5 = ed6742805866d11d6a28267330980ab1}

:checksum $PATCHDISTDIR/6.1.001
{md5 = 97bdbe371953b9d25f006f8b58b53532}

:checksum $PATCHDISTDIR/6.1.002
{md5 = f56455248658f019dcf3e2a56a470080}

:checksum $PATCHDISTDIR/6.1.003
{md5 = 0e000edba66562473a5f1e9b5b269bb8}

#>>> end <<<

These lines are automatically added or replaced when using "aap makesum".

It’s nice to have it in one file, so that there can’t be any mistake in using the
wrong checksum file. It can be in a separate recipe if needed.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 37

4. The Port Recipe
 example part 4

#>>> automatically inserted by "aap makesum" <<<

do−checksum:

:checksum $DISTDIR/vim−6.1.tar.bz2
{md5 = 7fd0f915adc7c0dab89772884268b030}

:checksum $DISTDIR/vim−6.1−lang.tar.gz
{md5 = ed6742805866d11d6a28267330980ab1}

:checksum $PATCHDISTDIR/6.1.001
{md5 = 97bdbe371953b9d25f006f8b58b53532}

:checksum $PATCHDISTDIR/6.1.002
{md5 = f56455248658f019dcf3e2a56a470080}

:checksum $PATCHDISTDIR/6.1.003
{md5 = 0e000edba66562473a5f1e9b5b269bb8}

#>>> end <<<

38

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 38

4. The Port Recipe
 dependencies

new -> new
 Dependency from an A-A-P port recipe on

another A-A-P port recipe:

Find a recipe with a matching version:

$ Search locally (user, system)

$ Use a specified URL

$ Search on a list of sites

$ May use binary package

There are three kinds of dependencies for a new port.

Using a binary package for a dependency greatly speeds up the install. It can
only be done when the dependencies do not require tuning the way the port is
build (which is mostly true).

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 38

4. The Port Recipe
 dependencies

new -> new
 Dependency from an A-A-P port recipe on

another A-A-P port recipe:

Find a recipe with a matching version:

$ Search locally (user, system)

$ Use a specified URL

$ Search on a list of sites

$ May use binary package

39

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 39

4. The Port Recipe
 dependencies

new -> traditional

 Dependency from an A-A-P port recipe on a
traditional port:

$ "make install" just like a traditional port
would do

This is quite simple, but it does require becoming root.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 39

4. The Port Recipe
 dependencies

new -> traditional

 Dependency from an A-A-P port recipe on a
traditional port:

$ "make install" just like a traditional port
would do

40

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 40

4. The Port Recipe
 dependencies

traditional -> new

 Dependency from a traditional port on a new port

Make a traditional port that is a wrapper around the A-A-P
port. The wrapper should contain:

$ Required items such as the port name and version number

$ Dependencies on traditional ports (not necessarily all of them)

$ A dependency on A-A-P

$ The fetch target obtains the port recipe

$ Overrule targets to invoke A-A-P on the port recipe

This is a bit clumsy, perhaps it would be possible to generate the wrapper port.

Alternatively, the traditional ports system could be expanded with functionality
to handle a dependency on a new port itself.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 40

4. The Port Recipe
 dependencies

traditional -> new

 Dependency from a traditional port on a new port

Make a traditional port that is a wrapper around the A-A-P
port. The wrapper should contain:

$ Required items such as the port name and version number

$ Dependencies on traditional ports (not necessarily all of them)

$ A dependency on A-A-P

$ The fetch target obtains the port recipe

$ Overrule targets to invoke A-A-P on the port recipe

41

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 41

overview

1. The Great Divide
2. A New Solution
3. Introducing A-A-P
4. The Port Recipe
5. Conclusions

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 41

overview

1. The Great Divide
2. A New Solution
3. Introducing A-A-P
4. The Port Recipe
5. Conclusions

42

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 42

5. Conclusions
 status

The current implementation is only a proof of concept.
There is still a lot of work to do before it is useful for a
larger group of people. Most of this can be copied
from other ports systems.

Tricky parts are:

$ Insufficient support for dependencies in
pkg_install

$ Adjusting configuration files in a portable way

$ Dependency on the new ports system itself

Most of the port recipe works. Main part that is missing is the dependency
handling. This could be solved by adding a pre−install shell script that handles
the dependencies. Not a very nice solution though.

The adjustment of configuration files is to be done in a binary package. This
should probably be a shell script. An alternative is to use an A−A−P recipe and
add a dependency on the A−A−P package.

When fetching individual port recipes, some of them may depend on another
version of the ports system files. In the traditional ports system this is solved
by the brute force method of updating everything. For A−A−P a smarter
solution is needed.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 42

5. Conclusions
 status

The current implementation is only a proof of concept.
There is still a lot of work to do before it is useful for a
larger group of people. Most of this can be copied
from other ports systems.

Tricky parts are:

$ Insufficient support for dependencies in
pkg_install

$ Adjusting configuration files in a portable way

$ Dependency on the new ports system itself

43

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 43

5. Conclusions
 Advantages

$ Being able to use the A-A-P ports side by side
with the traditional ports system is the main
advantage.

$ Should also work on non-BSD systems

$ A-A-P recipes are much easier to use than
Makefile with shell script

$ Support for using ports by a single user

$ Avoids root usage, better security

$ No backwards compatibility restrictions, can
include all the good features of other ports
systems

It will be possible to use the A−A−P ports system side by side with a traditional
ports system. Gradually more A−A−P ports can be made.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 43

5. Conclusions
 Advantages

$ Being able to use the A-A-P ports side by side
with the traditional ports system is the main
advantage.

$ Should also work on non-BSD systems

$ A-A-P recipes are much easier to use than
Makefile with shell script

$ Support for using ports by a single user

$ Avoids root usage, better security

$ No backwards compatibility restrictions, can
include all the good features of other ports
systems

44

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 44

5. Conclusions
 will it work?

$ Further enhancements of package tools is
needed as well.

$ Development of A-A-P will continue anyway,
the question is how much effort is spend on
the port recipe. This depends on feedback
and volunteers.

$ The success of the A-A-P ports system
remains to be seen.

The development of A−A−P will be concentrated on the generic items. Only
when there is sufficient interest for the port recipe will work be done on it.
Help from others will be needed, I cannot do this all by myself.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 44

5. Conclusions
 will it work?

$ Further enhancements of package tools is
needed as well.

$ Development of A-A-P will continue anyway,
the question is how much effort is spend on
the port recipe. This depends on feedback
and volunteers.

$ The success of the A-A-P ports system
remains to be seen.

4545

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 45

The end

Questions?

www.A-A-P.org

Whether the A−A−P recipe will be successful or not, I hope this presentation
has inspired you to think of ways to use one port for all systems.

I will be around for more information.

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 45

The end

Questions?

www.A-A-P.org

4646

All for one port, one port for all - Bram Moolenaar - European BSD conference Amsterdam, 2002 November 17 slide 46

The end

.

