A-A-P: A Software Build Facility For
The Internet Era

Presentation given at the O'Reilly Open Source Convention, July 7 — 11
2003, Portland, OR, USA.

Author: Bram Moolenaar <Bram@A-A-P.org>

Copyright: stichting NLnet Labs 2003
Permission is granted to copy this work unmodified.

A..A.P Introduction

Vim comes with 19 Makefiles
Various tools for configuration, version

You probably know me as the creator of the text editor Vim — Vi IMproved. |
have attempted to make it run on many different systems. For this a lot of
work had to be done. On Unix autoconf can be used to adjust to various
properties of the system. Unfortunately, this is not available on other
systems. This resulted in a large number of "Makefiles and #ifdefs in the
code.

To automate all the complicated steps of building and producing a distribution
many different tools are needed, each with their own arguments. Currently
this only works on Unix, because it is too much work to also support other
systems.

The result is a combination of Makefiles and shell scripts that only | fully
understand.

A.A.P Introduction

Vi --> Vim

Out of Vi came Vi IMproved. So what do you get when you improve make?

“Makeim” doesn't sound very nice and is too long to type, so | choose to use
“Aap”.

If the improved way of editing for you means making the step from Vi to
Emacs , then what would you call an improved make? Well, Emacs as well,
of course. You might argue that Emacs is not a very good build system, but
that applies to text editing as well :-).

Anyway, | decided to start the A-A-P project to create a nice build facility.

Introduction

AAP Aap and Agide

The name A-A-P does not stand for anything yet. It does make the project
appear as the first entry in sorted lists!

Aap is a program, written in Python. The script file it executes is called a
recipe. What a recipe looks like will be explained further on.

Agide is a framework. The core is a Python program with WxPython. Many
different programs are bound together, for example Vim and gdb. The Agide
project file is an Aap recipe.

All software of the A-A-P project is using the GNU GPL.

This presentation is about Aap. But | will first give you some idea what Agide
is.

Introduction
Agide

Jniax 3ufers Window DiChip Werds fgide

DG AEBRRRE 353 TRQa 72

curvin->w_p_wih = TRUE; A

Z e

* ":help': open a read-orly window on a help file

voi
2x_help(eap)
exarg T

B
char_u *arg;
PILE *holpfd; /+ file deserister of help file */

int 7
#ifdef FEAT_WINDOWS

i3

[4392,1 75% et

TERE]
[CLpyrighl 1998 Free Satware Fuund,

tupe

b 1a
tupe
ture 3

Tncluding e-nail]

This slide shows Agide being used for debugging Vim. This is what Agide is
capable of right now. You can set breakpoints, single-step through the code,
etc. | actually use this for my work on Vim now.

The left-upper window is the Agide navigation window. It can be used to
browse the project, running tools and select an opened window.

The right-upper window is Vim, being used to edit a source file. You can set
breakpoints here and see the value of a variable by pointing at it (balloon
evaluation).

You can type any gdb command in the gdb window (left-lower window).

A separate xterm is used to run the program in (lower right window), so that
its output doesn't clobber the debugger output.

It should be possible to use another editor without changing the debugger
tool, and to change the debugger without modifying the editor. The tools do
not interface directly, Agide takes care of connecting the various tools
together.

Introduction
AAP Aap

Aap has many features. | have attempted to mention the most important

ones, but the list is already very long. | will have to skip a few parts to fit the
time available.

The reason so many features are included is that it is not sufficient to provide
one more feature than another build tool. Aap must provide a solution for all
issues that developers encounter. When an essential feature would be
missing, you cannot use Aap.

In other words: Everything you always wanted in a build facility, but were
afraid to ask for.

AAP Aap ... is portable

The Internet made it possible to be system

Since the Makefile is a very popular file format, it has been used as a starting
point.

Many different Makefile dialects exist and trying to be backwards compatible
conflicts with the goal of adding new features in an “easy to use way”.
Therefore no attempt was made to be backwards compatible.

To be portable to non-Unix systems, use of shell scripts must be avoided.

AAP Aap ... is portable

Do not invent yet another script language.

Many existing languages could be used, why

One might argue that language xyz is better than Python. Unfortunatly it's a
different language for everyone. | had to make a choice. As it turned out,
Python works quite well.

Just like Python was made to replace shell scripts and C programs, Aap was
made to replace shell scripts and Makefiles.

Python may need to be installed on systems where it is not available. Other
script languages have the same problem, there is no script language that is
supported on both MS-Windows and Unix.

OK, so now we have a file format that is based on a Makefile and uses
Python instead of shell scripts. This is called a recipe. Next we will see how
this is used.

AAP Aap ... is simple

:print Hello world!

This is really a silly example.

What this shows is that recipe commands start with a colon. That makes
them easy to recognize

Note that there are no quotes around the text.

AAP Aap ... is simple

Building the “hello world” program:

build the hello program

:program hello : hello.c

The “:program” command specifies the name of the program to be build and
the source files that it is to be made of.

Write this recipe as “main.aap” and execute the “aap” program without
arguments. Aap will figure out dependencies, compile hello.c into an object
file and link it into the “hello” program.

Furthermore, Aap will offer the functionality to install, uninstall and cleanup.
This works more or less like automake. The $DESTDIR and $PREFIX
variables are used to specify where the files are installed. Currently “aap
install” only works for Unix.

AAP Aap ... is simple

Building the two programs:

:program foo : foo.c

common.c

:program bar : bar.c

common.c

Note that no quotes or line continuation is used. This makes it easy to list
files and hard to make mistakes with a backslash somewhere.

AAP Aap ... is simple

Listing files

Myfiles =
bar.c
common. c
another.y

parser.l

:program myprog : $Myfiles

The list of files is easy to sort, no need to fix the backslash on the last item.

Note that yacc and lex files can be used as well. They are processed to
generate a C file automatically.

AAP Aap ... is simple

Generating libraries

Myfiles = bar.c

common. c

another.y

parser.l
:1ib mylib : $Myfiles

:dll mydll : $Myfiles

Libraries can be created in the same way as a program.

Aap will use the default way to create a (shared) library with your compiler.
That is, if it knows how to do that. The idea is that the knowledge is added to
Aap, so that not every user has to figure it out himself. And it makes recipes
portable.

In the future more commands like “:program”, “:dllI” and “:lib” will be added.
Perhaps a “:pdf’ command can be used to generate a PDF file from various
file formats.

Real-world recipes will be more complicated, since you mostly want to do
more than the obvious things. For that you need the basic mechanisms that
the recipe offers.

AAP Aap ... is powerful

These are the most important low-level mechanisms that can be used.

| will explain each of them briefly.

A‘A‘P Aap ... is powerful
1. dependencies and rules

Mostly like in a Makefile.

target : sourcel source2 ...

build commands ...

o

:rule $.out : src/%.in

build commands ...

The dependencies can be mixed with the high-level commands like
“program”. That can be used to do part of building in a different way.

This is typical for Aap: offer a high-level solution that is easy to use for most
purposes, offer a low-level solution for specific purposes.

--- Keep simple things simple, make complicated things possible ---

A’A‘P Aap ... is powerful
2. recipe commands
Same commands at top level and in build blocks.
All:

Drink = tea

:print Drink more $Drink!

rink = coffee

:print Drink more $Drink!

The same commands can be used at the top level of the recipe and in build
blocks. This is quite different from a Makefile, where at the top level only
assignments are allowed and in build blocks only shell commands are used.

There are a few exceptions. For example, dependencies and rules can only
be defined at the top level.

Just like in a Makefile, first the whole recipe is read and commands at the top
level are executed. Then the dependency graph is followed, depth-first.

Variables actually may exist in different scopes, but that is out of the scope of
this presentation.

A’A‘P Aap ... is powerful
2. recipe commands

Various commands available to avoid using
system-specific comands:

Of course it would be possible to write these commands in Python, but this
quickly results in complicated code to handle errors and handle less obvious
desires.

The copy command is especially powerful, since it accepts "URLs. This
makes it possible to copy a file from one machine to another (provided you
have access to both machines!).

The “:sys” command is needed at the lowest level, for example to start the
compiler. Mostly this will be taken care of by actions, this is explained further
on.

A"‘A‘P Aap ... is powerful
2. recipe commands

Using commands in a pipe.

:cat version.c
| :ewval re.search (“version (\d*)”,
stdin) .group (1)

| :assign Version

:print The version is $Version

This shows that the basic mechanisms of the shell are available in the recipe.

Note that this is about the most complex thing you can do with recipe
commands. If you want more you have to use Python script.

A’A‘P Aap ... is powerful
3. tree of recipes

Split up your work in several recipes. There are
three ways to use them:

For larger projects it is convenient to split up the work in sub-projects. You
can make one toplevel recipe “main.aap” that refers to the sub-projects with
the “:child” command.

File names used in a parent or child recipe are always relative to where the
recipe is located.

The “iinclude” command includes another recipe in the current scope. This is
useful for common settings, not for sub-projects. It does not change directory.

The “:execute” command can be used to build a target of a sub-project
directly. It is almost like executing Aap on a recipe.

Except for “:execute” all recipes are read and parsed before dependencies
are handled. This takes care of most complicated dependencies between
sub-projects.

Note: recipes do not need to exist, they can be automatically downloaded the
moment they are used.

Aap ... is powerful
AY, ‘l 4. variables and attributes

Variables are strings, nice and simple.
A variable can be used as a list of white-

Files = *.cC

:program myprog : $Files

Just like in a Makefile variables are strings. A difference is that $VAR items
are evaluated right away, this is what most programmers expect. Postponed
evaluation is also possible with the “$=" assignment.

Quotes are used to include white space in an item. How to include a quote
then? Use double quotes around a single quote and single quotes around a
double quote. Just like Python. But no backslashes are used, to avoid
trouble with MS-Windows filenames.

The special meaning of a wildcard can be avoided by putting the character
inside square brackets: [*] Most other special characters can be given with
the form $(x). For example, $($) stands for a dollar.

Aap ... is powerful
Y l 4. variables and attributes

Attributes can be used to specify properties of
items. Attributes are in curly braces.

Files = docs.txt {filetype = rtf}

:child parser/main.aap
{fetch = scp://machine/path/%$file%}
:attr {check = md5} header.h

The use of attributes provides a very powerful mechanism. This makes it
possible to extend the functionality of Aap in a uniform way.

Attributes can given as part of an assignment, as part of the arguments of a
command and explicitly with the “:attr” command.

Aap ... is powerful
A 5. Python everywhere

@if os.name == “posix”:
:print Nice system!

@else:

:print Your system needs to reboot for

this change to take effect.

A line of Python script is preceded with the @ character.

Notice that Python and recipe commands can be mixed as you like. The
indent is used to define command blocks in the same way as in Python.

Aap ... is powerful
A 5. Python everywhere

:python
def mysort (list) :

list.sort ()

return list

If your python code gets really big you can also put it in a separate file and
“import” it.

Aap ... is powerful
A 5. Python everywhere

Files = "glob(“images/*.png”)"

The difference with using wildcards directly is that these are only expanded
where a filename is expected. For an assignment any string can be given,
thus wildcards are not expanded. The Python glob() function is used here to
explicitly expand wildcards.

Aap ... is powerful
A 5. Python everywhere

Python is easy to handle.

Don't try this at home!.

AAP Aap ... does Internet

Download, upload, install, etc.

Can be mixed with build commands.

Files = main.c version.c common.c

:attr {fetch = http://my.org/prog/%file%} $Files

:program myprog : $Files

When executing this recipe Aap will download the specified files before
building.

Making a local copy is needed for reliability. There are several settings to
specify when a new copy is to be obtained. In this example the file is
obtained if it does not exist or when updating is explicitly requested.

Besides http:// you can currently use ftp://, rcp://, scp:// and rsync://.

A‘A‘P| Aap ... does Internet
Upload a web site
Edit the files locally, test locally.

Use a recipe to upload the files that have
changed:

Files = index.html
address.html

images/*.png

:attr {publish = rsync://my.org/www/%$file%} $Files
all: publish

When executing this recipe Aap will figure out which files changed since the

last time uploading was done. Thus you don't need to remember which files
you changed.

Execute this recipe with “aap publish”. Actually, running Aap withouth
arguments also works, since the “all” target depends on the “publish” target.

Rsync is used here, so that small changes to big files are transferred quickly.
| use recipe like this for most of my own web sites.

A‘A‘P Aap ... does Internet
Remote install

Install on a remote machine:

program myprog :

Since this looks too simple to be true, | have executed the recipe and you can
see the actual output of installing a program remotely.

Note that the “bin” directory didn't exist yet and Aap created it automatically.

AP Aap .. installs for you

Installs a required package when it is needed.

There is no version handling yet. Requesting a specific version of a package
and updating to a new version of a package is still to be implemented.

How it works:

+ The install facility obtains a bootstrap recipe from the Aap web site.

+ Depending on the system, another recipe may be downloaded and
executed.

+ The recipe contains the download and installation instructions (simple or
complicated).

+ Possibility to redirect to another site, so that each package can be
maintained by someone else.

Security is still to be taken care of. A system with checksums could be used.
The issues involved are not different from other automatic update facilities.

A-A-P| Aap ... does version control

CVS is difficult to use for beginners. An Aap
recipe can be used to make daily work simple.

build the hello program

iles = hello.c

:program hello : $Files

:attr {commit = cvs://} $Files

Currently starting a project in CVS must still be done directly with CVS
commands. Since this requires a sequence of actions and mistakes can be
made this could also be done by Aap or Agide.

Creating a repository also needs to be done directly with CVS, but that
probably isn't a task for Aap. This could be added to Agide.

When a file is added and Aap is run with the “revise” argument, Aap will add
the file to the CVS repository. Deleting works the same way.

It is very important that the list of files in the recipe is correct. Otherwise files
could be added that don't belong in CVS. Especially watch out with
wildcards.

AAP Aap ... Is predictable

Predictable builds are important, especially for
larger projects.

You can also chose to use timestamps if you prefer.

When a build command or just an option is changed, the targets involved will
be rebuild. Especially useful when changing compiler flags.

Automatic dependency checking currently works for C files. Support for other
languages can be added by the user.

| recently had a strange problem with running make to build a program: It
insisted in linking with Python, even though | was certain | had not enabled
the Python feature. After adding a few echo commands | discovered the
Makefile was using $SPYTHON, which happended to be set as an
environment variable.

Aap does use variables like $PATH, but not SCFLAGS or $CC from the
environment. Otherwise giving the recipe to someone else is not sufficient
for him to reproduce what you do with the recipe.

The log file can be used to find out what went wrong, even when you forgot to
redirect the output of Aap. It can also be used to review the dependencies
between the files.

AP | Aap ... does configuration

Autoconf only works on Unix.

It is quite complicated, both for a developer

“All systems” means: all systems where Python runs.

The idea is to run tests more or less like configure does this. But not using
shell scripts, which are difficult to write in a portable way.

The configuration will be done with recipe commands. You can make a
separate recipe to do the configuration, or mix the commands in between
building. Avoids the need to do configuration when cleaning up.

Most people write a short shell script to store their configure arguments. Aap
supports this in a uniform way, so that you can use a GUI for this (not
implemented yet).

Joerg Beyer has started work on Aapconf, but only the first few steps have
been taken.

Ev il

Aap ... is documented

The documentation was written in SGML docbook. The other formats are

generated from this.

AAP Aap ... has Zimbu!

Why use Aap?
Aap is the only build tool with a mascotte!

' i
ZIMBU THE MONKEY HE'S USING HIS 1FEEL GOOD GRAVY !
TAIL! HE HAS THE JAWS DID YOUL SEE
OF EVOL- HIM CUTAND

UTION ON PASTF? !

DESIGNED THREE
COMMERCIAL PRODUCTS
THIS WEEK! WED
BETTER FIND CUT
RIS SECRET.

)
2w

A NATURAL
ADVANTAGE !

1334 Lrilec Foature Symdicws, v

S Az

Makes you wonder why software developers don't have tails...

AAP Aap ... now and future

Version 1.0 is available.

+ Can be downloaded as a .zip file and

You can download and use Version 1.0 of Aap right now. It works. | use it
myself for a wide number of tasks, including distribution of Aap and
maintaining several web sites.

For downloading see http://www.a-a-p.org/download.html.

Hopefully more languages and compilers will be supported in the next
version. This depends on people to submit their Aap tool plugins.

Agide is also available. As mentioned earlier, it can be used for debugging
Vim. Not that you would need to do that...

What Aap 2.0 will be is not at all clear. It largely depends on the feedback |

receive. Possibly it will include the configuration functionality. Another thing
often asked for is a system for distributing software (deployment with proper
dependency handling and upgrade support).

AAP Aap ... now and future

- Zimbu award -

+ € 444 for the best contribution to the A-A-P project
» € 222 for the most useful patch for Aap or Agide

Aap version 1.0 has been released. The next version should be even more
powerful, faster, reliable and simpler to use. If you help making this possible
you will not only receive appreciation from Aap users, but have a chance to
make money as well!

* The “best contribution” can be anything that helps the progress of the
A-A-P project or improves the usability of Aap and/or Agide.

* The “most useful patch”can be for fixing a long standing bug, adding
support for a specific compiler, a port to another system, etc.

* The “brightest idea” is a suggestion for a useful addition to the A-A-P
project or for improving Aap or Agide without the need for an actual
implementation.

* Contributions are to be sent to the A-A-P-develop maillist. No specific
format is required. Everybody contributing to A-A-P automatically
becomes a potential award winner.

* You may submit as many times as you like. All contributions must go
under the GNU GPL.

* The closing date is September 30, 2003. The winners will be announced
on the A-A-P web site in October 2003.

* The selection of the award winners will be done by Bram Moolenaar, the
A-A-P project leader.

* The money is provided by the NLnet foundation.

AAP Aap ... BOF session

Tonight will be the perfect time for talking about build tools. The first hour is

for SCons, another interesting Python based build facility. The second hour
is for A-A-P.

| would like to invite everybody who has suggestions for Aap or wants to ask
more questions than what we have time for now. Be there tonight!

A.A.p The End

This is the end of the presentation.

