
www.A-A-P.org

developeruser
Comments?

free info

A-A-P is funded by

Write your comment here.
Please add your name and e-mail address.

distribute

develop

search

install
top level

recipe

recipe for
Unix

CVS server
source files

ftp server
packages
patches

Change
request

MASTER_SITE = ftp://ftp.vim.org/pub/vim/
cvs://cvs.vim.org/vim {login = vimuser}

ORIGIN = $MASTER_SITE/aap/main.aap

@if OSTYPE == “unix”:
 :child $MASTER_SITE/unix/vim.aap.gz
@elif OSTYPE == “mswindows”:
 :child $MASTER_SITE/pc/vim.zip//vim.aap
@else:
 :error “OS not supported:” $OSTYPE

The port for “myprog” requires a series of patches
and a few additional files for autoconf.

PORT_TYPE = autoconf

MASTER_SITE = ftp://ftp.download.net/pub/mirror/
http://sources.org/apps/

MASTER_SUBDIR = foo/myprog
MASTER_FILE = myprog_src-1.3.tar.gz {md5 = 123456}

docs/myprog-1.3.tar.gz {md5 = 987654}

PATCH_SITE = ftp://ftp.ucs.edu/~mike/myprog/
PATCH_SUBDIR = patches
PATCH_FILE = myprog13.diff.gz
PATCH_ADD = myprog13.add.tar.bz2

DEPEND_BUILD = cproto {version = 1.[3-9]|[2-9]\..*}
DEPEND_RUN = ghostscript

build
recipe

Add all C files in the util directory to the sources.
SOURCE = main.c version.c gui.c [glob(“util/*.c”)]
OBJECT = [aap_sufreplace(“.c”, OBJSUF, SOURCE)]

The target can be build for release or debugging
:variant release debug {target = debug}
 @if variant == “release”:
 CFLAGS = -O4
 TARGET = myprog$EXESUF
 @else:
 CFLAGS = -g
 TARGET = myprogd$EXESUF

:rule %.html : %.php
 :require unphp # install unphp when missing
 unphp < $in > $out

What is a recipe?
A recipe is a mix of a Makefile and a Python script.

Like a Makefile it defines dependencies and actions to carry out
when a target needs to be updated.

Python commands can be used almost everywhere. They are in
lines marked with @ or are enclosed in [].

Many default rules exist to keep the recipe simple and portable.
The result is that setting a few specific variables like SOURCE and
TARGET is enough for A-A-P to know what needs to be done.

Special A-A-P commands start with a colon. This makes them
easy to recognize and allows for future expansion. Examples are
:rule, :update and :child.

why not use a Makefile?
Portability:
Makefiles are not portable. Not only because there are several
variants of the make program (e.g., GNU make and BSD make),
also because they use shell commands that may not be available
everywhere (use "copy" or "cp"?) or have subtle differences (e.g.,
options for "cp").
A-A-P recipes use Python commands, which execute the same
way on all systems. The intention is that A-A-P works at least on
all kinds of Unix, MS-Windows and MacOS.

Reliability:
Makefiles only use timestamps for dependencies. In many
situations this fails (e.g., after restoring an older version of a file).
A "make clean" or "touch” is often needed to work around this.
A-A-P uses various signatures. For C files the signature ignores
changes in comments and irrelevant white space changes. For
most other files MD5 checksums are used. Timestamps are also
available.

Power:
Makefiles are very simplistic and contain redundant information,
which is often solved by using tools to generate or update the
Makefile. The lack of a script language results in using shell
commands and other clumsy solutions. A-A-P is much more
intelligent. The default rules take care of most of the common
things (e.g., updating dependencies, compiling for various
languages). Python script can be used for the complicated things.

Current status of the A-A-P project
The A-A-P project has started March 2002.
No code is available yet!
The first development version is expected by September.
The first release should be available spring 2003.
However, this very much depends on volunteers to join the project.

The developer writes a recipe with which
an end user can install his package.

A common method is to create a simple
top level recipe, which detects the type of
system and refers to an OS-specific
recipe. Python commands can be used to
detect properties of the system.

A choice can be made to do the whole
installation with recipes or to use an OS-
specific installer once the required files
have been downloaded.

The actual distribution (uploading) of files
can done by the build recipe (see below).
This avoids mistakes when making a new
release. A minimal distribution has one
recipe and an archive with files. A large
distribution has several recipes, archives
and patches. Files are usually uploaded
with ftp, rcp or using cvs. Many other
methods are supported.

Useful recipe items:
MASTER_SITE: Specify a list of sites
where the files can be obtained. Can also
be a standard list (e.g., the FreeBSD sites
or sourceforge).
ORIGIN: Where this recipe itself can be
obtained. A-A-P uses this to check if an
updated version of the recipe is available.
:child refers to a recipe that is used only
when needed. It works like including that
recipe at this spot, but takes care of
changing directory and local variables.

A-A-P includes many features to make
developing software easier:

The recipe can be used as a powerful
Makefile for building. At the same time it
can be used as a project file for the IDE.

The A-A-P tools form a framework.
Interfaces are defined to be able to plug-in
your favorite choice of tools.

The browse system is used to navigate
through all the parts of a project. Not only
to find where a variable is used, also to
locate documentation on the internet.

For large projects A-A-P provides the
possibility to only have those parts local
that you are working on. The rest is
downloaded on demand. For example,
when jumping to the definition of a
function, a browse file tells A-A-P in which
file a function is defined and the recipe
specifies the URL of the directory where
the files can be obtained from.

Uniform support for various Version
Control Systems (VCS). For the most
often used commands no knowledge of
the specific VCS tools is required. A
personal VCS is provided. It works like an
unlimited undo operation with branches.

Automatic configuration. Like autoconf,
but easier to use and also works on non-
Unix systems. Uses Python, just like
recipes. (probably not available in the first
version.)

Handling of change requests. This
interfaces with an existing issue tracking
system to store and retrieve the reports.
The advantage of using A-A-P for this is
that many fields can be filled in
automatically.

1. A list of sites where the application can
 be downloaded from. Possibly different
 sites for different systems.
2. The right version of the application will
 be selected, based on the requirements
 of the application, desired version
 (stable or latest) and properties of the
 system (OS version, available libraries).
3. When installing from source code (like
 the FreeBSD ports) patches are located
 and included when needed. For
 binaries patches may also be applied.
4. Dependencies on other packages are
 handled. A range of acceptable
 versions can be specified. Obtaining
 several standard tools is handled by
 A-A-P itself (e.g., unzip).

Delayed installation: From within an
installed application the recipe may be
used again to install an extra feature. This
is especially useful for documentation in
various languages. It avoids that many
choices need to be made when installing
the application.

Updating of an existing application is
supported. It can first be installed to try it
out and delete the previous version only
when there is no problem.
A-A-P will retrieve those files that have
changes. The developer still has to
provide the logic how settings are taken
over by the new version. Python script
can be used for this.

When an end user desires to install an
application many questions arise:
1. Where to download it from?
2. Is this version going to work on my
 system?
3. Are there any fixes I should include?
4. What libraries and tools does this
 application require?

A-A-P makes this easy: The end user only
needs to find the top level recipe for the
application (see below). It contains all the
information required to install the
application:

If no recipe can be found, the user can
write it himself. Examples and guidelines
are provided to make this easy. This is a
bit more work than manually obtaining the
files. The advantage comes when
installing a new version or installing the
same application on another system. And
the recipe can be made available to
others, so that they don’t have to reinvent
the wheel.

Finding the top level recipe is still required
to install an application. Several ways to
locate the recipe are provided:
• The central recipe repository can be
 searched. Everybody can upload a
 recipe here. A rating system helps to
 select between alternatives.
• The site for the application provides the
 recipe.
• The site for your OS provides recipes for
 ported applications.
• Use a search engine.
• A collection of recipes is already on your
 system (similar to the FreeBSD ports
 system). A-A-P will automatically find
 an updated version.

